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! SU_RY _"

The coupling of the combined source-vortex distribution of Green's poten-

tial flow function with contemporary numerical techniques is shown to provide

accurate, efficient, and stable solutions to subsonic invlscid analysis and

design problem: for muiti-element airfoils. The analysis problem is solved by
direct calculation of the surface singularity distribution required to satisfy

the flow tangency boundary condition. The design or inverse problem is solved
by an iterati_:_ process. In this process, the geometry and the associated

pressure distribution are iterated until the p¢_ssure distribution most nearly ,
corresponding to the prescribed design distribution is obtained. Typically,

five iteration cycles are required for convergence. A description of the
analysis and design method is presented, along with supporting examples.

INTRODUCTION

The surface panel method philosophy for solving arbitrary incompressible

potential flow problems involves the mating of classical potential theory with

contemporary numerical techniques. Classical theory is used to reduce an

arbitrary flow problem to a surface integral equation relating boundary condi-
tions to an unknown singularity distribution (Reference l).The contemporary

numerical technique', are then used to calculate an approximate solution to the
integral equation (References 2-14).

:_i properly formulated surface panel methods are exact in the sense that

the difference between the approximate numerical solution and the exact solu-

tion to the integral equation can be made arbitrarily small at the expense of

increasing the number of computations. This does not imply that all panel
methods are equally successful. Indeed, vast differences exist with respect

to prediction accuracy versus computational effort, reliability, simplicity,

and applicability to an inverse solution mode for design problems.

The major distinguishing characteristics of panel methods are depicted in
Figure i. For the special case of two-dJmenslcnal flow, nearly all the pos-
sible comblnatlons of Figure i have been formulated and tested at McDonnell

Aircraft Company (MCAIR). The most successful of the tested formulations was

selected as the foundation for the MCAIR Multi-Element Airfoil Analysis and

Design Computer Program, herein after desi_ated the MCAIR Airfoil Program.

The analysis (direct) mode calculates the velocity distribution of an arbi-
trary airf_ il geometry, whereas the design (inverse) mode iterates to generate

the geometry most nearly corresponding to a prescribed surface velocity distri-
bution. Unusually rapid and consistent convergence is obtained because the

inverse algorithm includes all the first order terms in the relationship be-

tween arbitrary geometry and velocity perturbations.
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This paper presents,background theory, the formulation, and representa-
tive numerical solutions for the MCAIR Airfoil Program.

NOMENCLATURE

c£ Airfoil lift coefficient

Cp Pressure coefficient [i - (_)2]

n Unit normal vector to a boundary

V Flow velocity

y Vortex density

Doublet density

o Source Density

SUBSCRIPTS

E External (fluid) side of a boundary

I Internal side of a boundary

N Normal component

T Tangential component

Free stream conditions

SURFACE SINGULARITY THEORY

Any three-dlmenslonal, incompressible, potential flow field can be con-

sidered to be induced by a suitable distribution of source and doublet slngu-

lar±ty densities on flow boundary surfaces (Reference i). It is usu_lly con-
venleut to treat the flow field as the sum of a uniform free stream V_ plus a

disturbance potential field a_sociated with the presence of the body (Figure
2). Then the total velocity V at any field point can be expressed as

v = v + (i)

where _ is the potential of the disturbance field.

The value of _ at an arbitrary field point P can be expressed in the
following form:

l
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o + P _n } ds (2)! _= {-r

where ds is a differential area element at arbitrary surface point Q of the

body; r is the distance to point P; n is the distance measured along an axis
normal to the body surface at Q, positive outward; and o and p are functions
of Iocatlon on the body surface, i.e., functions of Q. o and p are respective-
ly the source and doublet densities.

For two-dlmenslonal flow, it is generally more convenient to use vortex
singularities in place of doublets. As is proved in Reference 4, a surface

doublet distribution of denslty p can be repl_cea by an equivalent vortex
dlstrlbutlon where the vortex density vector 7 satisfies the following equs-

i tion at each surface point"

= n x Vp (3)

n is the local unit normal vector pointing i1"to the flow field.

It is noteworthy that there is no limit ".:,J the number of different solu-
tion source - vortex distributions correspondlng to any given flow field. The
theoretical distinction between the different distributions is best illus-

trated by exan_Lnlng the imaginary flow field internal to the boundaries (Fig-
ure 3). Consider t_-dlmenslonal flow. The discontinuity across any surface
sheet of sources and Vortices can be expressed as follows:

VNE- VNI = o (4)

i VTE - VTI = V (5)

where o and X are the local source and vortex densities. For solid body bound-

ary conditions (VNE = 0), Equation (4) indicates that a vortex-only solution
will correspond to VNI = 0 at every internal boundary point. The unique in-
terval flow field generated by zero normal velocity boundary conditions is,

of course, stagnation. Then Equation (5) indicates that VTE = y everywhere
on the exten,_ sur_dce.

A particularly useful combined so_urce-vortex distribution corresponds to
the uniform internal flow field VI = V,. For this case, Equations (4) and (5)
imply that the source and vortex densities are equal to the external pertur-

bation velocity components, i.e. ,

VN = VN® + o (6)

VT - VT® + y (7)

i Subscript E has been omitted for brevity. The above combi_,ed source-vortex

I distribution is equivalent to the application of Green's third identity (Refer-

I ence 15) to the perturbation potential _. A schematic of Equations (6) and

(7) is presented in Figure 4. #
L
!
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An illustration of the nature of three different singularity distributions

corresponding to the same potential field is presented in Figure 5. The theo-
retical singularity distributions for a source solution, vortex solution, and

the combined Green's identity source-vortex solution are shown for the flow

around an infinite circular cylinder with flow tangency boundary conditions.
It is interesting that the combined source-vortex distribution is a fifty per-

cent blend of the source only and vortex only solutions. _reen's identity

typically provides a source distribution more mild than the source only solu-

tion and a vortex distribution more mild than the vortex only solution.

The combined source-vortex distribution of Green's identity is especially

suitable for application to a numerical panel method. The equality between

singularity densities and disturbance flow velocity means that regardless of

either boundary conditions or geometry, the singularity magnitudes cannot be-
come disproportionately large. This contrasts sharply with source only solu-

tions, for which the source density can increase without bounds as body thick-

ness approaches zero even though the velocity remains finite everywhere. The
practical significance is that the mild source-vortex distributions associated
with Green's identity eliminate excessive velocity gradients between boundary
condition control points, thereby reducing the possibility of leakage. The
relationships between disturbance flow velocity and singularity density holds
regardless of boundary conditions, be they Neumann, Virichlet, or mixed.
These relationships can always be used to eliminate half the unknown singular-
ity densities a priori, leaving no mere effective unknowns that a source only
or vortex only approach.

TWO-DIMENSIONAL SOLUTION FORMULATION

The present formulation is based on the combined source-vortex distrib_-

tlon of Green's identity (Equations 6 and 7). Low order panel modeling is

employed to the effect that source gradient and surface curvature corrections

on each panel are ignored. However, the use of internal potential boundary

conditions and the application of the velocity - singularity strength equality
results in close to higher order prediction accuracy for most practical geo-

mctric shapes. The advantage of the low order modeling is the simplicity

inherent in establishing inverse capability.

l%e geometry of each airfoil element is simulated by a closed polygon,
where the polygon segment end points are assumed to lie on the actual airfoil.

The midpoint of each segment (panel) _s selected as the boundary condition
control point.

For Neumann prescribed normal velocity boundary conditions, the source

density distribution is established a priori from Equation (6). It is assumed
that the source density is uniform on each panel.

The gist of the solution to analysis problems is to determine the appro-

priate vortex distribution. The vortex density is assumed to vary linearly

on each panel and to be continuous at panel end points, with one exception.

If the geometry has any slope discontinuities such as a sharp trailing edge,
the vortex density is allowed to be discontinuous at the corresponding panel

end point. This is consistent with exact theoretical solutions, for which
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corners ate reflected as discontinuities in the vortex distribution. The

: magnitude of the discontinulty is an additional unknown which is determined

through the introduction ofan internal boundary condition control point near
i the corner. The distance from the corner is nom_.Lally selected as 1% of the

local panel length.

Instead of directly imposing prescribed normal velocity boundary condi-
: tions at the control points, a theoretically equivalent approach first applied

by Morino, _t al ence13) is used. Consistent with the internal velo-
city field VI = V®, uniform internal perturbation potential is prescribed at
each control point of an airfoil element. In the present two-dimensional

formulation, this is easily accomplished by specifying that the analytical llne

integral of perturbation velocity component along an internal path connecting

adjacent control points be zero.

The circulation of each airfoil element is controlled by either of two

i. methods at the discretion of th_ user. First, the net vortex strength can be
prescribed directly. Alternately, a Kutta condition can be applied in which
the velocity normal to the trailing edge bisector is set eq,ml to zero at a

location approximately 2% local segment length downstream. The nominal 2%

value has been select_g L=_ause it consistently provides lift coefficient pre-

dictionaccuracy that agrees within 1% of the vlrtually exact conformal solution

of Cathera11 et al. (Reference 16) for typical panel models.

Imposition of the potential boundary conditions and one circulation con-

trol equation per airfoil element establishes a system of linear equations with

the same number of unknown vortex densities as equations, This number is equal
to the sum of the total number of panels and total number of sharp corners.

Solution to the system renders the complete set of singularities known.

At each. control point, the surface velocity is calculated from Equation

(7) and, for steady state flow, the pressure distribution is calculated by
Bernoullits equation

t4'
c = i - - (8)

Force and moment integration is performed under the assumption that the con-

trol P0intpressure applies uniformly to each panel.

Inverse solutions are generated in accordance with the iterative-linear-

ization philosophy developed in Reference 17. For the elements to be designed

in a multi-element airfoil systenb ,the following steps are Involved:

(1) The user prescribes a design pressure or velocity distribution around
:. the surfaces of the various elements.
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(2) The user prescribes a starting geometry to initialize the calcula-
tions and the location of one point per element to be fixed in space,
such as the trailing edge.

(3) The program solves the direct problem for the geometry,

in order to determine the change in velocity distribution required
to achieve the prescribed values.

(4) The program calculates the rate of change of surface velocity with

respect t_ an arbitrary change in surface angle distribution. Each

element perimeter remains fixed. If the tangential component of

velocity at the control point of the ith panel is designated VTI and

if the surface angle of the jth panel is designated _, then the

array Aij is calculated where

_VTi

Aij = _-

(5) The change in surface angle distribution is calculated in accordance

with the prescribed velocities and the following first order expres-
sion:

AVTi -- I (Aij AOj)
J

(6) The geometry is corrected by the program and steps (3)- (5) are
repeated as a seriec of iteration cycles.

The most difficult and important step in formulating the inverse capability is

to generate the matrix Aij. It is noted that all terms were incorporated in
deriving the partial derivative, including singularity strength changes and

the displacement of panels J+l, J+2, etc. corresponding to the surface angle

change dO_. The corresponding singularity strength changes are obtained by a

first order expansion to the boundary condition equation. In order to obtain
numerical stability in the inverse process, the velocities are prescribed not

only at the panel midpoints but at endpoints as well. Then the solution in-

volves minimizing the mean square error between the prescribed and calculated
distributions.

EXAMPLE SOLUTIONS

The following examples demonstrate the numerical behavior of the present

MCAIR Airfoil Program as compared to alternate approaches.

The benefits of using a combined source-vortex distribution versus source-

only is improved accuracy for (i) thin highly loaded airfoils and for

(2) sharp concave corners. Examples of the fer_r are presented in Reference

14 and are not repeated here. The latter is typical of wlng-fuselage inter-
sections and is represented by the wedge-cyllnder example of Figure 6. Both
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the present method and the Douglas Neumann source method (Reference 2) were

applied to the geometry using identical panel modeling (244 panels). The !

results are virtually identical except near the sharp concave corner, in which

region the source solution diverges while the present solution properly ap-

proaches stagnation.

The advantage of the internal potential boundary conditions is reflected

in the calculated pressure distribution for the Karman-Trefftz airfoil of

Figure 7. In each of the three calculated panel method distributions, the i
combined source-vortex distribution of Green's identity was applied and the

exact llft coefficient from the Catherall-Sells solution was prescribed. Con- 'i

I verting from the direct imposition of zero normal velocity boundary conditions i

I to prescribed internal perturbation potential generates the same type of accur-
acy improvement as obtained by applying higher order corrections for source i

_ gradient and panel curvature effects. For each of the three panel method
solutions, the conversion from calculated singularity density to surface velo- _

_'. city was conducted by the most accurate approach, namely, Equation (7) for

potential boundary conditions and the summation of influence coefficients for _-
flow tangency.

_i The third example demonstrates prediction accuracy of the MCAIR method
: for one of the few two-element airfoils for which an exact conformal mapping

[: solution is available for comparison (Reference 18). Using a total of 66

i panels, the geometry and calculated pressure distributions at zero incidencei,

are presented in Figure 8. The agreement with the exact solution is good,

including the calculated lift corresponding to the _raillng edge bisector
Kutta condition.

The objective of the first inverse example is to design a circular
cylinder by the MCAIR method using a nearly flat plate for the starting geometry

(Figure 9). The exact analytical _urface velocity distribution was prescribed,

and the converged solution geometry of Figure 9 was obtained after four iter-

ation cycles. The panel endpoints are within a maximum distance of 0.002
radius of lying on a circle. The complete partial derivatives of velocity

with respect to surface angle change were necessary but not sufficient for

obtaining convergence about the periphery of this example. The use of mild

combined source-vortex singularites is also a factor. To illustrate, the

example was repeated, but this time vortex-only singularities were used to
induce the flow field in accordance with the analysis method of Dvorak and

Woodward (Reference 7). The geometry never converged (Figure i0) but oscillated

_30 ° in the leading edge region from one iteration cycle to the next.

The final example demonstrates inverse solution capability for the two-

! element Williams airfoil presented earlier in Figure 8. The starting geometry
of Figure ii was used to inltialize the calculations, and the calculated sur-

face velocity distribution of Figure 8 was prescribed on both elements. The

geometry converged and agreed with the target geometry to within a tolerance

I _ of one-tenth of one degree in five iterations (Figure ii).

The above examples are typical of the accuracy and numerical stability

of the MCAIR Airfoil Program. On the CDC CYBER 173, a two-element airfoil

!
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i analysis solution using 70 panels total requires approximately 4 seconds com- ,

puting time. For the corresponding inverse solution, approximately 20 seconds
is required per iteration cycle.

I . ,JCONCLUDING REMARKS

The use of the source-vortex distribution of Green's identity coupled

with internal perturbation potential boundary conditions provides a simple,

I accurate, reliable, and efficient procedure for solving airfoil incompressible
potential flow problems. For a wide range of.geometric shapes, low order.
paneling modeling generates prediction accuracy usually associated with higher

order solutions. 2_e procedure is especially suitable for application to in-
verse design problems.
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TABLEl.- MODIFICATIONSOF THE SUBROUTINESIN THE BASELINEVERSION

Subroutine No Minor Major Delete
change change change

MAIN X
POINT X
SLOPE X
TRANS X
DISTP X
FTLUD X
DIR X
LSO X
PROOT X
•MAIN1 X
READIT X
GEOM X
ROTRAN X
ASLOT X
NORMAL X ,

MAIN 2 X
CHEN X
MATRIX X
POTLF X
CAMBER X
SMOOTH X
VOVBT X
THICK X
COMPR X
STAG X
MAIN 3 X
LOAD X
LAMNA X
BLTRAN X
TURBL X
TURB X
DERIV X
START X
CONFBL X
CONF§ X
CONF 7 X
CONF 8 X
DLIM X

i
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i
SINGULARITY TYPE SOLID BODY BOUNDAR _CONDITIONS

! • SOURCE • ZERO NORMAL VELOCITY

I • VORTEX (DOUBLET) • CONSTANT STREAM FUNCTION

MCAIR MULTI-ELEMENTAIRFOILI

ANALYSIS-DESIGN
METHOD

PANEL MODELL'NG L, ! UsR(_?_ iOLENoLc0IOFilNIDiNcCAOuLLVCAEiiA_i,iiA

I" _OWORDERI
• "'G"OROE. LT_I

! Figure i.- Diagram of surface singularity panel methods for
Incompresslble,7otentlal flow.

r

Figure 2.- Body immersed tu an unbounded flow field.

t
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E _ FluidSideof Boundary
(External)

VN

VT

I _ ImaginaryFlow
(internalSide
of Boundary)

Boundary
Surface

_v,=,_#o_/-...
D) / _'--..

o._/ V.r ///

-../
Flsure 4.- Green t8 identity veloctty_8tngulartty relationship.
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Reprl:sun talioll

@ Source distributiof_ only

_ _=, u@ Vortex distribulion only

Green's identity

SOURCE
DENSITY

. i

W_/Voo= 1

VORTEX+2 | {___ _--- =- _-.-._._
DENSITY L _=__ .= _. **% I

o_
0 60 120 180

u • DEG

Figure .5.- Equivalent singularity representations for a
circular cylinder.

2.5 I

,/-BOTH METHODS

2.0 SOURCE _,,,_ _'- -- _"' %METHOD

Iv' , BOTH /""--""_,_ $ _%
i£--I I METHODS-_ 4.0.3 \

"°i X, k--
I_URCE,i i "--" ,oo(_o ,,ot
| VORTEX l V= / /

o,I <.c.,.,_7- / /
• I

0,2 0,4 0,6 0,8 1,0
S- SURFACEDISTANCE

Figure 6.- Comparisons of source and source-vortex solutions.
Concave corner flm¢.
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Karman-Trefftz Airfoil 3.24"C_,I

-S I ' -
I

-4

•='-,""-'-- Exact (Catherall.Sells)

,_ O Po_'ential boundary conditions (low order)

I=] Flow tangency (high order)

0 ._
- _w 1_ li I _ I li

0 0.2 04 0.6 0.8 1.0 ,
FRACTION CHORD

Figure 7.- Effect of panel modeling and boundary conditions,

v--.,*"'_ L,,_,,,,,,,:,,,'_
oo I1__ (36 P.,,,els) _ Flap

"q_"- : " " " _ 2 0 r" _...._ (30 Pa.els)

_--- Ex,,_,Iw,,;;_;,_ 20a/ / _LAP

o _c_,_ _0,/ -,.0I- _ --%,
-,.or [

Cp I -_ / 10_)..._/-__-I.__ -L_ I I
t- - _-o__._'-_0. o.__o.4o.e0.8 ,.o
I - _ FRACT,ON

0_ CHORD1.0
0 0.2 0.4 0.6 0.8 1.0

FRACTION CHORD

Figure 8.- Two-element airfoil solution. MCAIR method.
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SZarring_l_letry
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?! ,..r,IIg_'altio¢ll

!
,ii

After 4
l{IrgtiOnl

(Convergrd)

Figure 9.- Circular-cyllnder inverse solution. MCAIR method.

51dl,t"WGtumetry

Figure i0.- Circular-cyllnder inverse solution.
Vortex-only method.
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L_ rescribed Points

for Fixed Gap

Vmo .............

Starting Geometry

._,_ Prescribed Points

V_

After 2 Iterations

V_ _ Points
After 5 Iterations

(Indistinguishable from Target Geometry)

Figure 11.- Two-element airfoil inverse solutlon.
MCAIR method.
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